
Implementing an Access Control System for
SVG Documents

E. Fernández-Medina1, G. Ruiz1, and S. De Capitani di Vimercati2

1 Escuela Superior de Informática
Universidad de Castilla-La Mancha

13071, Ciudad Real - Spain
Eduardo.FdezMedina@uclm.es

gruiz@proyectos.inf-cr.uclm.es
2 Dip. di Tecnologie dell’Informazione

Università degli Studi di Milano
26013 Crema - Italy

decapita@dti.unimi.it

Abstract. In this paper, we present an access control system that can be
used for controlling access to SVG documents. The first part of this paper
briefly describes the access control model on which the system is based.
The second part of this paper presents the design and implementation
of the system.

1 Introduction

An increasing amount of multimedia information transmitted over the Inter-
net is in the form of vector image data, encoded by means of new XML-based
standards such as the World Wide Web Consortium’s Scalable Vector Graphics
(SVG) [10], which allows for the definition of two dimensional vector graphics
(specifically vector graphic shapes, images, and text) for storage and distribution
on the Web. The SVG standard can be used in different applications: technical
plans, organizational charts and diagrams, as well as medical images used in
diagnosis and research, to name a few. In the security area, while controlling
access to text-based documents has been the focus of many research activi-
ties [9], raster graphic information has been seldom considered, mainly because
of its monolithic internal structure. However, XML-based vector images present
new and challenging feature protection problems, related to fine-grained access
control to their internal structure. We have then defined a novel approach to
fine-grained feature protection of Scalable Vector Graphics (SVG) data [1]. The
proposed model allows to selectively transform SVG graphical data according
to the user’s profile, thus releasing only the features that the user is entitled to
see. In this paper we present the design and implementation of an access control
system based on this model. More precisely, in Section 2 we show an overview of
SVG. In Section 3, we summarize the access control model for SVG documents
presented in [1]. In Section 4, we describe the architecture of the system and the
algorithms implementing the enforcement of the access control rules. In Section 5

R. Meersman and Z. Tari (Eds.): OTM Workshops 2003, LNCS 2889, pp. 741–753, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



742 E. Fernández-Medina, G. Ruiz, and S. De Capitani di Vimercati

SVG document
�

�

�

�

XML version
�

�

�

�
DOCTYPE

�

�

�

�
SVG tree

�

�

�

�

descriptive text
�

�

�

�
script

�

�

�

�
definitions

�

�

�

�
body

�

�

�

�

�����
�����

���� �� ��
�����

Fig. 1. General Structure of an SVG Document

we illustrate the system’s working through an example. Finally, in Section 6 we
present our conclusions and future work.

2 Overview of SVG

An SVG document has a structure, composed of several optional elements placed
in the document in an arbitrary order. Figure 1 shows the general structure used.
Nodes XML Version and DOCTYPE are common for any XML-based document and
specify the XML version used in the document and information about the type
of the document (the public identifier and the system identifier for SVG 1.0),
respectively. Node SVG contains all the elements specific to SVG documents and
is composed of four parts: descriptive text, script, definitions, and body. The
descriptive text includes textual information not rendered as part of the graphic
and is represented by two elements: <title>, usually appearing only once, and
<desc>, appearing several times to describe the content of each SVG fragment.
The script portion contains function definitions. Each function is associated with
an action that can be executed on SVG objects in the document. Functions have
a global scope across the entire document. The definition portion contains global
patterns and templates of graphical elements or graphical properties that can
be reused in the body of the SVG document. Each definition is characterized by
a name, which is used in the body of the document to reference the definition,
and by a set of properties. The graphical elements to be rendered are listed
after the <defs> node, according to the order of rendering. Each element can
belong to any of the basic SVG graphics elements, such as path, text, rect,
circle, ellipse, line, polyline, polygon, and image, whose names are self-
explanatory. The body of an SVG document contains any number of container
and graphics elements. A container element can have graphics elements and other
container elements as child elements. Container <g> is used for grouping together
related graphics elements. A graphics element can cause graphics to be drawn.
For instance, the use graphics element references another element (usually a
definition) and indicates that the graphical contents of that element must be
drawn at that specific point in the document. Each SVG element may have its
own properties, modeled by XML attributes. All elements in the document can
be uniquely identified including the special attribute id=‘identifier’. It is
also possible to include user-defined properties, which can be useful for SVG
data processing.



Implementing an Access Control System for SVG Documents 743

3 An Access Control Model for SVG Documents

The model is based on the use of authorizations (or access control rules) that are
themselves expressed with an XML-based language. Each authorization specifies
the subject to which the authorization applies, the object to which the authoriza-
tion refers, the action to which the authorization refers, and the sign describing
whether the authorization states a permission (sign = ‘+’) or a denial (sign =
‘−’). Basically, an authorization 〈subject ,object ,action,sign〉 states that subject
is allowed (sign = ‘+’) or is denied (sign = ‘−’) to perform action on object .

Subjects. Our model allows authorizations to be referred to specific user identi-
ties (e.g., Sam), user groups (e.g., Employee), and properties of the users (e.g.,
name, address, and specialty) that are stored in profiles. Each profile is mod-
eled as a semi-structured document and can be referenced by means of XPath
expressions [13]. More precisely, the subject field is composed of two parts: (1)
the identity of the user/group, and (2) a subject expression, which is an XPath
expression on users’ profiles. Authorization subjects are then defined as XML
elements of the form:

<subject>
<id value=‘user/group-id’/>
<subj-expr>xpath-expr</subj-expr>

</subject>

Objects. Objects are elements of an SVG document. There are three kinds of
protection objects: definitions (<defs>), groups (<g>), and SVG elements. SVG
elements can be graphical or textual elements, such as rect or circle, or can be
elements referencing the definitions. The model allows the association of autho-
rizations with any of such specific elements. Objects can be referenced by using
both generic XPath expressions on the SVG document and high level predi-
cates that make the reference independent of the syntax of the elements in the
document. More precisely, the model defines four ways of identifying objects:

– a path expression resolving in the object;
– an object identifier (the value of attribute id);
– a type (the value of attribute typeElement);
– a function perimeter that can take as input a path expression, an object

identifier, or a type and returns the area that contains the object given as
input.

Authorization objects are then defined as XML elements of the form:

<object>
<refer value=‘object-id’/>
<cond>pred-expr</cond>

</object>



744 E. Fernández-Medina, G. Ruiz, and S. De Capitani di Vimercati

Fig. 2. Hight Level Scheme

This structure allows for specifying an object or a set of objects, and a con-
dition for referencing all elements satisfying specific semantically rich constrains
(e.g., computers inside a room). Conditions are boolean expressions that can use
the following predicates:

– inside(obj). It returns the object in the authorization if it is inside an
element whose identifier, type, or name is obj .

– together with(obj). It returns the object in the authorization if it is a child
of an element together with an object whose identifier, type, or name is obj .

– number of(obj ,n). It returns the object in the authorization if there are n
instances of the object whose identifier, type, or name is obj .

Action. Actions can be render, rotate, change color, and so on. For the sake of
simplicity, we consider as default action the rendering of an SVG document, so
in the authorizations we do not explicitly specify an ‘action’ element.

4 Implementation of the System

The model briefly summarized in this paper has been implemented by using the
ASP technology [7] under the Microsoft Internet Information Server [5]. The
language used to implement all the algorithms of the system is Visual Basic
Script [8]. To manage the XML Document Object Model (DOM) [2], we have
selected the parser MSXML [6] that provides a rich set of functions and proce-
dures. Figure 2 illustrates the abstract working of our system. Given an access
request, the involved SVG document, the security policy containing all the
authorizations defined on the document, and the subject information (i.e.,



Implementing an Access Control System for SVG Documents 745

Fig. 3. System Architecture

the user group hierarchy definition and users’ profiles), the system has to gen-
erate the customized SVG document that includes only the features that the
requester is entitled to see.

We now describe the architecture of the system (Section 4.1), and the main
algorithms enforcing the security policy (Section 4.2) together with their com-
plexity.

4.1 System Architecture

The architecture of the system (see Fig. 3) is composed of a set of data reposi-
tories, a set of modules, and several data flows.

Data repositories. The system includes four basic repositories:

– User Profiles Repository (UPR): It stores the XML-based user profiles.
– Access Control Rules Repository (ACRR): It stores the XML-based docu-

ments that contain all the authorizations defined in the security policies.



746 E. Fernández-Medina, G. Ruiz, and S. De Capitani di Vimercati

– User Groups Hierarchy (UGH): It stores the information about the user
groups hierarchy.

– SVG Documents Repository (SVGDR): It contains all the SVG documents
that have to be protected.

Modules. The modules included in the system are the following.

– Security Policy Administrator (SPA). It creates and manages all the repos-
itories.

– Access Requester (AR). It manages the access request information.
– User Access Point (UAP). It is in charge of managing the user authentica-

tion.
– Security Policy Handler (SPH). It coordinates the communication between

the modules to fulfill the general goal of the system.
– Applicable Rules Selector (ARS). It considers all the access control rules

specified in the security policy, and selects only those that are applicable to
the requester.
q

– Document Analyzing Point (DAP). It processes the SVG document, propa-
gating permission and denial labels in the SVG tree according to the autho-
rizations selected by the ARS.

– Document Pruner (DP). It prunes a labeled SVG document, leaving only
the SVG features that the requester is entitled to see.

Enforcement. The client-server model enforces the security policy as follows.

1. The SPA creates all repositories (UPR, ACRR, UGH and SVGDR) in the
server.

2. The AR sends the access request and the login and password of the requester
to the UAP.

3. The UAP reads from the UPR module the requester’s profile.
4. The UAP prepares an XML request document that includes the requester’s

profile and information about the document the requester wants to access.
This XML document is sent to the SPH.

5. The SPH coordinates the other modules. It initially sends the requester
information to ARS.

6. The ARS reads from the ACRR the access control rules, and from the UGH
the user groups hierarchy.

7. Once the ARS has collected the information about the requester, the access
control rules, and the user groups hierarchy, it selects the access control rules
that are applicable to this particular requester, according to her profile and
to the user group membership. The set of applicable access control rules are
then sent to the SPH.

8. The SPH sends the applicable access control rules to the DAP.
9. The DAP reads from the SVGDR the SVG document.



Implementing an Access Control System for SVG Documents 747

10. Once the DAP has the applicable rules and the SVG documents, it starts
the labeling process on the SVG document. Each rule is processed, and the
corresponding features of the SVG document are labeled. At the end of this
process, the labeled document is sent to the SHP.

11. The SPH sends the labeled SVG document to the DP in order to obtain the
visible document.

12. The DP prunes all the SVG elements that are denied and sends the resulting
document to the SPH.

13. The SPH sends the customized document to the UAP.
14. The UAP offers the rendering of the resulting SVG document.

4.2 System Development

As we have described in the previous section, we can identify four main processes:
user information gathering, applicable rules selection, SVG document labeling,
and SVG document pruning. In the following, we give some implementation
details of these processes.

User Information Gathering Algorithm. The UAP module is in charge of
managing the user authentication. To this end, the algorithm needs to access
the authentication information in the XML document that contains the user
profiles. The corresponding XPath query is:

/users/user-profile[login[@value=’" + login + "’] and
password[@value=’"+password+"’]]

Once we have identified the requester, we just have to create a XML docu-
ment that includes the requester information and the object that she wants to
access.

Complexity. Let n be the number of user profiles stored in the system. The
complexity of this algorithm is Θ(n).

Applicable Rules Selection Algorithm. The security policy can include
many access control rules and the system has to determine the rules that applies
to the requester. To this purpose, the requester information is sent from the
SPH to the ARS, which is in charge of reading all the access control rules from
the ACRR and the user groups hierarchy from the UGH, and then to filter only
those rules that involve the requester. The algorithm is as follows:

1. For each access control rule, we identify all affected users and decides if the
requester is one of them. We first consider the subject id:
– If the subject id corresponds to an individual user u and u is the re-

quester, then the rule is considered, otherwise it is discarded.
– If the subject id corresponds to a group g, and the requester is a direct

or indirect member of g, the rule is considered, otherwise it is discarded.



748 E. Fernández-Medina, G. Ruiz, and S. De Capitani di Vimercati

The rules thus selected have to be taken into consideration if and only if
the requester’s profile satisfies the XPath expression that can be included in
such rules.

2. The applicable rules are ordinated according to their priority level, from the
lowest to the the highest. More precisely, the priority level is established by
comparing the subject id of the rules: rule r has a priority greater than rule
r′ if the subject id of r is an ascendant of the subject id of r′ in the user
group hierarchy. Incomparable rules or with the same level of generality or
specificity have the same priority. In case of conflict rules (i.e., a positive and
a negative rule both applicable) that are incomparable or with the same level
of generality or specificity, the denials take precedence principle is applied.
This means that the priority of a negative rule is greater than the priority
of a positive rule.

At the end of this process, we obtain an ordered list of applicable rules that
has to be sent to the SPH.

Complexity. Let n be the number of access control rules and m be the number of
groups. The complexity of point 1 of the algorithm is Θ(n*lg m), where lg m is
derived from the binary search of the user groups tree. Point 2 of the algorithm
has been implemented by applying the quick sort algorithm and therefore the
complexity is Θ(n*lg n*lg m). So, we can conclude that the complexity of the
complete algorithm is Θ(n*lg n*lg m).

SVG Document Labeling Algorithm. The labeling process consists in asso-
ciating a positive or negative label with each element in the SVG document. Once
the SPH sends the ordered list of applicable access control rules to the DAP, the
SVG document has to be read from the SVGDR, and all these rules has to be
processed in order to decide which elements of the document the requester is
entitled to see.

Positive rules (sign=‘+’) generates positive labels associated with the cor-
responding SVG nodes, and negative rules (sign=‘−’) generates negative labels
associated with the corresponding SVG nodes.

The labeling process is basically composed of two steps:

1. Top-down labeling . For each rule in the ordered list the following process is
applied:
– Determine the SVG elements that satisfy the object specification.
– A label with the sign of the rule is associate with each selected SVG

element. If some of these elements have already a sign label, it is over-
written, because previous labels corresponds to more general rules.

– Labels are then recursively propagated to all SVG elements that are
contained in the affected SVG elements.

2. Bottom-up labeling . Whenever a node has a positive label and the corre-
sponding father has a negative label, the labeling process has to go up in the
SVG tree, making visible the perimeters of all the containers. This process



Implementing an Access Control System for SVG Documents 749

is realized by applying a depth-first search: for each SVG node n, if the sign
of n is ‘+’ the sign of the perimeter node of all ascendant of n is set to ‘+’.

The resulting labeled SVG document is then sent to the SPH module to
prepare the definitive document.

Complexity. Let n be the number of applicable rules and m be the number
of SVG nodes (elements that compose the tree of the SVG document). The
complexity of the top-down and bottom-up labeling processes is Θ(n*m) and
Θ(m), respectively.

SVG Document Pruning Algorithm. The pruning process consists in delet-
ing all nodes of the labeled SVG document that the requester is not entitled to
see. In particular, if the security policy is open (i.e., an element is accessible
unless a negative rule specifies the opposite), we have to delete all nodes with
a negative label. On the other hand, if the security policy is close (i.e., an ele-
ment cannot be accessed unless a positive rule specifies the opposite), we have
to delete all non-labeled nodes and all nodes with a negative label. We consider
the open security policy as default. The pruning process is carried out by the
DP module, and works as follows:

– The SVG tree is traversed by means of a depth-first search, and for each
node:

• If the node is a simple node (not a container), and its label is ‘−’, we
prune the node.

• If the node is a container and its label is ‘−’, we have to prune the node,
but only if all its children have also a negative ‘−’ label. Otherwise, this
node remain intact, and the children are processed.

Complexity. Let n be the number of nodes in the SVG tree. The complexity of
this algorithm is Θ(n).

5 An Example

To illustrate the working of the system, consider the simple SVG doc-
ument in Fig. 4a rendered in Fig. 4b. It represents the map of a
Department of Defense (DD). The body of the SVG document is a
group element whose identifier is deptdefense, and its sub-elements are
main entrance, public area, and private area. Group public area includes
cafeteria, IDoffice, two restroom instances, info desk, and public affair
office. Group private area includes emerg unit, navy and air control,
computer room, four videocamera instances, eight laser sensor instances, and
two alarm control instances. Each of these elements are composed of a graphi-
cal representation and a name. Consider also the user groups hierarchy in Fig. 5a.
Here, the root element users has two subgroups: Non DD Members and DD



750 E. Fernández-Medina, G. Ruiz, and S. De Capitani di Vimercati

(a)

(b)

Fig. 4. An example of SVG document (a) and its rendering (b)



Implementing an Access Control System for SVG Documents 751

DD Users

DD Members

Administrator

Non DD Members

Security Officer

(a)

<subjects>
<user-profile id="Alice">

<name value="AliceDoo"/>
<group value="SecurityOfficer"/>
<address value="University Dr."/>
<job value= "head"/>
<level value="senior"/>
<login value="AliceD"/>
<password value="Alice133"/>

</user-profile>
<user-profile id="Bob">

<name value="Bob"/>
<group value="Administrator"/>
<address value="Manchester Rd"/>
<citizenship value="EU"/>
<job value= "doctor"/>
<login value="BobR"/>
<password value="BobbyRT"/>

</user-profile>
</subjects>

(b)

Fig. 5. An example of user group hierarchy (a) and two examples of user profiles (b)

Members that in turn has two subgroups, namely Administrator and Security
Officer. Figure 5b shows the profile of two users, Alice and Bob. These profiles
show among other details, that Alice is a member of the Security Officer
group and Bob is a member of the Administrator group.

Suppose now that the access to the given SVG document has to be regulated
according to the following three authorizations.

1. Everybody can see the content of any room in the public area.
<authorization-rule>

<subject>
<id value="users"/>

</subject>
<object>

<refer value = "id.PublicArea"/>
</object>
<sign>+</sign>

</authorization-rule>

2. Members of the Security Officer group whose job is not controller can-
not see computers.
<authorization-rule>

<subject>
<id value="SecurityOfficer"/>
<subj-expression>

/subjects/user-profile[job[not(@value=’controller’)]]
</subj-expression>

</subject>
<object>

<refer value = "typeElement.computer"/>
</object>
<sign>-</sign>

</authorization-rule>



752 E. Fernández-Medina, G. Ruiz, and S. De Capitani di Vimercati

Fig. 6. Final SVG rendering

3. Members of the Administrator group cannot see the security elements in
the navy and air control room.

<authorization-rule>
<subject>

<id value="Administrator"/>
</subject>
<object>

<refer value = "typeElement.security"/>
<cond>inside(id.NAControl)</cond>

</object>
<sign>-</sign>

</authorization-rule>

Consider now a request to read the map of the department submitted by
user Bob. The applicable rules selection algorithm selects the first rule
and the third rule; the second rule does not match the profile of Bob. Once the
applicable rules have been selected, the labeling algorithm includes the au-
thorization labels in the SVG document, and finally, the pruning algorithm
eliminates all the SVG documents that Bob is not entitled to see. Figure 6 il-
lustrates the portion of the map returned to Bob. As you can notice, according
to the first rule, Bob is entitled to see the public area, and, according to the
third rule, Bob cannot see all the security elements included in the navy and
air control room.



Implementing an Access Control System for SVG Documents 753

6 Conclusions and Future Work

We have presented the design and implementation of an access control system
for SVG documents. We have analyzed the architecture, and the algorithms used
in the system. The system allows for controlling access to any SVG document
in a user-transparent way and is currently used (in a experimental way) for
controlling access to a graphical representation of the building of a computer
science faculty.

Future work includes the implementation of an administrative tool for man-
aging all the system components (access control rules, users, groups, and so
on). Another important aspect is the extension of the model to control access to
other XML-based multimedia standards formats, such as SMIL [11] for multime-
dia presentations, VoiceXML [12] for dialog, and MPEG-21 [3] and MPEG-7 [4]
for video.

References

1. E. Damiani, S. De Capitani di Vimercati, E. Fernandez-Medina, and P. Samarati.
An access control system for svg documents. In Proc. of the Sixteenth Annual
IFIP WG 11.3 Working Conference on Data and Application Security, University
of Cambridge, UK, July 2002.

2. Philippe Le Hégaret. DOM. W3 Consortium, June 2002.
http://www.w3.org/DOM/.

3. International Organisation for Standardisation. MPEG-21 Overview v.5, October
2002. http://www.chiariglione.org/mpeg/standards/mpeg-21/mpeg-21.htm.

4. International Organisation for Standardisation. MPEG-7 Overview v.8, July 2002.
http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm.

5. Microsoft Corporation. Internet Information Server. www.microsoft.com/iis.
6. Microsoft Corporation. MSXML 3.0 SDK.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/xmlsdk30/
htm/xmmscxmloverview.asp.

7. Microsoft Corporation. Active Server Pages, December 2000.
http://msdn.microsoft.com/library/default.asp?url=/nhp/default.asp?contentid=
28000522.

8. Microsoft Corporation. VB Script fundamentals, 2003.
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/script56/
html/vbstutor.asp.

9. P. Samarati and S. De Capitani di Vimercati. Access control: Policies, models,
and mechanisms. In R. Focardi and R. Gorrieri, editors, Foundations of Security
Analysis and Design, LNCS 2171. Springer-Verlag, 2001.

10. World Wide Web Consortium. Scalable Vector Graphics (SVG) 1.0 Specification,
September 2001.

11. World Wide Web Consortium. Synchronized Multimedia Integration Language
(SMIL 2.0), August 2001. http://www.w3.org/TR/smil20.

12. World Wide Web Consortium. Voice Extensible Markup Language (VoiceXML)
Version 2.0, April 2002. http://www.w3.org/TR/voicexml20.

13. World Wide Web Consortium (W3C). XML Path Language (XPath) 2.0, December
2001. http://www.w3.org/TR/xpath20.


	Introduction
	Overview of SVG
	An Access Control Model for SVG Documents
	Implementation of the System
	System Architecture
	System Development

	An Example
	Conclusions and Future Work



